課題組簡介
王金勇,研究員,血液與免疫細胞再生研究組組長,國家自然科學基金杰出青年科學基金(2019醫(yī)學部)獲得者,中國科學院大學博士生導師。他的研究團隊旨在結(jié)合體內(nèi)誘導譜系重編程、體外誘導干細胞分化、造血骨髓微環(huán)境原位重建等多途徑探索血液及免疫細胞再生與生理功能重建。其研究團隊長期聚焦“抗白血病免疫細胞再生與白血病骨髓微環(huán)境原位修復(fù)”研究,在T細胞再生等領(lǐng)域取得一系列原創(chuàng)技術(shù)突破,擁有多項發(fā)明專利?
?
個人經(jīng)歷
2012年3月至今:中國科學院廣州生物醫(yī)藥與健康研究院,研究員
2007年9月-2012年2月:美國威斯康星醫(yī)學院、威斯康星大學麥迪遜醫(yī)學與公共衛(wèi)生學院,博士后
2006年8月-2007年8月:中國農(nóng)業(yè)科學院上海獸醫(yī)研究所, 博士后
2001年-2006年:浙江大學, 博士
1997年-2001年:萊陽農(nóng)學院,學士
血液與免疫細胞再生
獲國家杰出青年科學基金資助
國家重點研發(fā)計劃項目首席科學家
1. Wang, T., Xia, C., Weng, Q., Wang, K., Dong, Y., Hao, S., Dong, F., Liu, X., Liu, L., Geng, Y., Guan, Y., Du, J., Cheng, T., Cheng, H., Wang, J. Loss of Nupr1 promotes engraftment by tuning the quiescence threshold of hematopoietic stem cell repository via regulating p53-checkpoint pathway. Haematologica, DOI: 10.3324/haematol.2019.239186.
2. Wang, T., Lv, C., Hu, F., Liu, L., Wang, J. (2020) Two-step protocol for regeneration of immunocompetent T cells from mouse pluripotent stem cells. Blood Science 2, 79-88.
3. Guo, R., Wu, H., Du, J., Wang, J. (2020) T cell regeneration: an update on progress and challenges. Blood Science 2, 22-26.
4. Hu, F., Huang, D., Luo, Y., Zhou, P., LV, C., Wang, K., Weng, Q., Liu, X., Guan Y., Geng, Y., Du, J., Chen J., Wang, J., and Wu, H. (2020) Haematopoietic lineage-converted T cells carrying tumour associated antigen-recognizing TCRs effectively kill tumour cells. Journal for ImmunoTherapy of Cancer, DOI: 10.1136/jitc-2019-000498.
5. LV, C., Chen, S., Hu, F., Huang, D., Wang, T., Du, J., Wang, J., and Wu, H. (2020) Pluripotent stem cell-derived CD19-CAR iT cells effectively eradicate B-cell lymphoma in vivo. Cellular & Molecular Immunology, DOI: 10.1038/s41423-020-0429-4.
6. Xia, C., Wang, T., Cheng, H., Dong, Y., Weng, Q., Sun, G., Zhou, P., Wang, K., Liu, X., Geng, Y., Ma, S., Hao, S., Xu, L., Guan, Y., Du, J., Du, X., Li, Y., Zhu, X., Shi, Y., Xu, S., Wang, D., Cheng, T., and Wang, J. (2020) Mesenchymal stem cells suppress leukemia via macrophage-mediated functional restoration of bone marrow microenvironment. Leukemia, 34(9):2375-2383.
7. Guo, R., Hu, F., Weng, Q., Lv, C., Wu, H., Liu, L., Li, Z., Zeng, Y., Bai, Z., Zhang, M., Liu, Y., Liu, X., Xia, C., Wang, T., Zhou, P., Wang, K., Dong, Y., Luo, Y., Zhang, X., Guan, Y., Geng, Y., Du, J., Li, Y., Lan, Y., Chen, J., Liu, B., and Wang, J. (2020) Guiding T lymphopoiesis from pluripotent stem cells by defined transcription factors. Cell Research 30, 21-33.
8. Weng, Q., Hu, F., Zhang, M., Dong, Y., Lv, C., Wang, Y., Liu, X., Wang, J. (2018) A protocol for generating induced T cells by reprogramming B cells in vivo. Cell Regeneration 7, 7-15.
9. Zhang, M., Dong, Y., Hu, F., Yang, D., Zhao, Q., Lv, C., Wang, Y., Xia, C., Weng, Q., Liu, X., Li, C., Zhou, P., Wang, T., Guan, Y., Guo, R., Liu, L., Geng, Y., Wu, H., Du, J., Hu, Z., Xu, S., Chen, J., He, A., Liu, B., Wang, D., Yang, Y. G., and Wang, J. (2018) Transcription factor Hoxb5 reprograms B cells into functional T lymphocytes. Nat Immunology 19, 279-290.
10. Li, X., Xia, C., Wang, T., Liu, L., Zhao, Q., Yang, D., Hu, F., Zhang, M., Huang, K., Geng, Y., Zheng, Y., Guan, Y., Wu, H., Chen, X., Pan, G., Chen, J., Du, J., and Wang, J. (2017) Pyrimidoindole derivative UM171 enhances derivation of hematopoietic progenitor cells from human pluripotent stem cells. Stem Cell Research 21, 32-39.
11. Chen, X., Zhao, Q., Li, C., Geng, Y., Huang, K., Zhang, J., Wang, X., Yang, J., Wang, T., Xia, C., Liu, X., Meng, M., Yang, D., Zheng, Y., Du, J., Zhang, X., Chen, J., Pan, G., and Wang, J. (2015) OP9-Lhx2 stromal cells facilitate derivation of hematopoietic progenitors both in vitro and in vivo. Stem Cell Research 15, 395-402.
12. Yang, D., Zhang, X., Dong, Y., Liu, X., Wang, T., Wang, X., Geng, Y., Fang, S., Zheng, Y., Chen, X., Chen, J., Pan, G., and Wang, J. (2015) Enforced expression of Hoxa5 in haematopoietic stem cells leads to aberrant erythropoiesis in vivo. Cell Cycle 14, 612-620.
13. Wang, T., Li, C., Xia, C., Dong, Y., Yang, D., Geng, Y., Cai, J., Zhang, J., Zhang, X., and Wang, J. (2015) Oncogenic NRAS hyper-activates multiple pathways in human cord blood stem/progenitor cells and promotes myelomonocytic proliferation in vivo. Am J Transl Res 7, 1963-1973.
14. Wang, J., Kong, G., Liu, Y., Du, J., Chang, Y. I., Tey, S. R., Zhang, X., Ranheim, E. A., Saba-El-Leil, M. K., Meloche, S., Damnernsawad, A., Zhang, J., and Zhang, J. (2013) Nras(G12D/+) promotes leukemogenesis by aberrantly regulating hematopoietic stem cell functions. Blood 121, 5203-5207.
15. Wang, J., Liu, Y., Li, Z., Wang, Z., Tan, L. X., Ryu, M. J., Meline, B., Du, J., Young, K. H., Ranheim, E., Chang, Q., and Zhang, J. (2011) Endogenous oncogenic Nras mutation initiates hematopoietic malignancies in a dose- and cell type-dependent manner. Blood 118, 368-379.
16. Wang, J., Liu, Y., Li, Z., Du, J., Ryu, M. J., Taylor, P. R., Fleming, M. D., Young, K. H., Pitot, H., and Zhang, J. (2010) Endogenous oncogenic Nras mutation promotes aberrant GM-CSF signaling in granulocytic/monocytic precursors in a murine model of chronic myelomonocytic leukemia. Blood 116, 5991-6002.